EC401ES: SWITCHING THEORY AND LOGIC DESIGN

B.Tech. II Year II Sem.	L	Т	Р	С
	3	1	0	3

Course Objectives:

This course provides in-depth knowledge of switching theory and the design techniques of digital circuits, which is the basis for design of any digital circuit. The main objectives are:

- To learn basic techniques for the design of digital circuits and fundamental concepts used in the design of digital systems.
- To understand common forms of number representation in digital electronic circuits and to be able to convert between different representations.
- To implement simple logical operations using combinational logic circuits
- To design combinational logic circuits, sequential logic circuits.
- To impart to student the concepts of sequential circuits, enabling them to analyze sequential systems in terms of state machines.
- To implement synchronous state machines using flip-flops.

Course Outcomes: Upon completion of the course, students should possess the following skills:

- Be able to manipulate numeric information in different forms, e.g. different bases, signed integers, various codes such as ASCII, Gray and BCD.
- Be able to manipulate simple Boolean expressions using the theorems and postulates of Boolean algebra and to minimize combinational functions.
- Be able to design and analyze small combinational circuits and to use standard combinational functions/building blocks to build larger more complex circuits.
- Be able to design and analyze small sequential circuits and devices and to use standard sequential functions/building blocks to build larger more complex circuits.

UNIT – I

Number System and Boolean algebra And Switching Functions: Review of number systems, Complements of Numbers, Codes- Binary Codes, Binary Coded Decimal Code and its Properties, Unit Distance Codes, Error Detecting and Correcting Codes.

Boolean Algebra: Basic Theorems and Properties, Switching Functions, Canonical and Standard Form, Algebraic Simplification of Digital Logic Gates, Properties of XOR Gates, Universal Gates, Multilevel NAND/NOR realizations.

UNIT - II

Minimization and Design of Combinational Circuits: Introduction, The Minimization of switching function using theorem, The Karnaugh Map Method-Up to Five Variable Maps, Don't Care Map Entries, Tabular Method, Design of Combinational Logic: Adders, Subtractors, comparators, Multiplexers, Demultiplexers, Decoders, Encoders and Code converters, Hazards and Hazard Free Relations.

UNIT - III

Sequential Machines Fundamentals and Applications: Introduction: Basic Architectural Distinctions between Combinational and Sequential circuits, The Binary Cell, Fundamentals of Sequential Machine Operation, Latches, Flip Flops: SR, JK, Race Around Condition in JK, JK Master Slave, D and T Type Flip Flops, Excitation Table of all Flip Flops, Design of a Clocked Flip-Flop, Timing and Triggering Consideration, Clock Skew, Conversion from one type of Flip-Flop to another.

Registers and Counters: Shift Registers, Data Transmission in Shift Registers, Operation of Shift Registers, Shift Register Configuration, Bidirectional Shift Registers, Applications of Shift Registers, Design and Operation of Ring and Twisted Ring Counter, Operation Of Asynchronous And Synchronous Counters.

UNIT - IV

Sequential Circuits - I: Introduction, State Diagram, Analysis of Synchronous Sequential Circuits, Approaches to the Design of Synchronous Sequential Finite State Machines, Synthesis of Synchronous Sequential Circuits, Serial Binary Adder, Sequence Detector, Parity-bit Generator, Design of Asynchronous Counters, Design of Synchronous Modulo N – Counters.

UNIT - V

Sequential Circuits - II: Finite state machine-capabilities and limitations, Mealy and Moore models-minimization of completely specified and incompletely specified sequential machines, Partition techniques, and Merger chart methods-concept of minimal cover table.

TEXT BOOKS:

- 1. Switching and Finite Automata Theory- Zvi Kohavi & Niraj K. Jha, 3rdEdition, Cambridge.
- 2. Digital Design- Morris Mano, 5rd Edition, Pearson.

REFERENCE BOOKS:

- 1. Modern Digital electronics RP Jain 4th Edition, McGraw Hill
- 2. Switching Theory and Logic Design A Anand Kumar, 3rd Edition, PHI, 2013.